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For Monte Carlo calculations of elementary particle processes, the transition rate 
integral can be written in terms of intermediate mass variables. Events generated in 
this way bear a weight factor consisting of the product of the squared transition am- 
plitude and several two-body phase space factors. Importance sampling, using a Breit- 
Wigner density, can improve efficiency in the case that one or more mass variables 
of the transition density are well approximated by a Breit-Wigner resonance. With the 
further restriction that the resonance occurs close to threshold and decays to two 
final-state particles, we have improved the efficiency by sampling a probability density 
which is the product of a Breit-Wigner density times the associated two-body phase 
space factor. 

I. INTRODUCTION 

For Monte Carlo calculations of elementary particle processes, the transition 
rate integral can be written [l, 21 in terms of intermediate mass variables 
fJJl6J~ -** co,-1 ; 

n-2 

t = I F I2 * R,(P I ml4 n 2wi&(~i I %+I, wi+l), 
i=l 

o,-~ = m, . 

The two-body phase space factors are; 

&GJJ I mm,) = (W - (ml + +Jz)(02 - (ml - m2)z.Y~z/(2~2). 

Monte Carlo event configurations can be generated by sampling values for the 
intermediate mass variables. 
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Assume that one or more mass variables (W for example) of the transition density 
can be approximated by a Breit-Wigner density; 

No) = (y/4 * (Y2 + (0 - ~o)Y, --oo<w<co. 

The density b(w) can be integrated. The resulting probability distribution function 
can be sampled by inversion. It is common practice to use random deviates w  
from b(w) for importance sampling of the transition density. Unfortunately, this 
does not account for the w  dependence of the product of two-body phase space 
factors. The efficiency of sampling can still be low. 

As a further restriction assume that the resonance occurs near threshold and 
decays into final state particles of masses m, and m, ; 

w <wo, -N io-+m,+m,. 

Near threshold, the phase space factor R,(P I mlwl) is approximately constant 
over the resonance region. The resonance associated two-body phase space 
factor R,(w 1 m,m,) rises rapidly from zero at threshold. We are thus motivated 
to find an algorithm for efficient sampling of a probability density which consists 
of b(w) times the resonance associated two-body phase space factor; 

f(w) = 20~ - b(w) * R,@J I mm,), $J<w<G. 

Random deviates w  sampled from this density will then allow more efficient 
importance sampling of the transition density. 

Section II of this note describes an algorithm for sampling of the density f(w). 
Section III compares results obtained using f(w) versus b(o) for in + ~0 at 
15 GeV. 

II. GENERATION OF TWO-BODY RESONANT STATES 

We note that the factor 2w * R,(w [ mlm2) rises rapidly from threshold 
w  = m, + m2 and approaches w  asymptotically. Thus we begin by showing that 
we can sample random numbers from the density; 

To sample f*(u) we scale the variable x = (OJ - OJ,,)/~. The unnormalized 
density can be written; 

f*(x) = yx/(l + x2) + oo/(l + x2), g<<<<. 
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The distribution function is thus; 

F*(x) = @G*(x) + BH*(x))/(A + B), 
A = y ln((l + V/(1 + x3), 
B = 2w,(tan-l(X) - tan-@)), 

G*(x) = ln((l + x2)/(1 + x2>)/ln((l + W(1 + _x2>), 
H*(x) = (tan-l(x) - tan-l(x))/(tan-l(Z) - tan-l($). 

To sample F*(x) we sample G*(x) with frequency A/(A + B) and sample H*(x) 
with frequency B&4 + B). G*(x) and H*(x) can be sampled by inverting the 
distribution function. The inverse of G*(x) is: 

x = ((1 + x2) * exp(N * ln((1 + X2)/(1 + x2))) - l)lj2. 

The inverse of H*(x) is: 

x = tan(iV . tan--l(X) + (1 - N) * tan-i($), 

After sampling x then w  = w,, + y * x. 
Random numbers sampled from f*(u) allow f(w) to be sampled by rejection. 

Letting g(o) = f(w)/‘*(o) we have: 

f(w) dw = g(w)f*(w) dw = g(w) dF*. 

We note that g(w) is bounded by 1. With w  sampled from I;*(w) we accept this 
value if N -C g(w), or equivalently if, 

(02 - (m, + mJy(oJ” - (ml - m2)“) > (N * coy. 

III. CONCLUSION 

To investigate the relative advantage of sampling withf(w) instead of b(o) we 
programmed both for 15 GeV. rn -+ pd -+prrr. The factor t was taken to be. 

For fixed W the maximum of fb = t/(b(oO) I was estimated as the maximum 
observed value for a run of 100 events. For sampling withf(w) the maximum of 
tf = R,(W 1 w+,wJ occurs at threshold o, = 2m,, WA = m, + m, . A sample of 
1000 unit weight events was generated by each method. 

The rejection efficiency for tb was 0.057. The rejection efficiency for tf was 
0.894. The internal efficiency of the function f(w) was 0.573 samples returned per 



118 R. E. KNOP 

three uniform random deviates. The tf method generated unit weight events at a 
rate 10 times greater than the tb method (3 set versus 30 set per 1000). 

There is an important point with respect to this particular application. In 
realistic simulations of rn collisions we must include the Fermi momentum of the 
bound neutron. The total center of mass energy W then varies from one event to 
the next. In the case under discussionf(o) has the additional advantage that the 
maximum value of tf is easily calculated as R,(W 1 2m, , m, + m,,). On the other 
hand, the maximum value of tb depends on the product of three two-body phase 
space factors, and the maximum as a function of W is difficult to determine. 

Finally, I would like to thank my colleagues at Florida State University for their 
encouragement in this problem. 
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